Search results
Results from the WOW.Com Content Network
Two images stitched together. The photo on the right is distorted slightly so that it matches up with the one on the left. Image stitching or photo stitching is the process of combining multiple photographic images with overlapping fields of view to produce a segmented panorama or high-resolution image.
In photogrammetry and computer stereo vision, bundle adjustment is simultaneous refining of the 3D coordinates describing the scene geometry, the parameters of the relative motion, and the optical characteristics of the camera(s) employed to acquire the images, given a set of images depicting a number of 3D points from different viewpoints.
combine overlapping images for panoramic photography; correct complete panorama images, e.g. those that are "wavy" due to a badly levelled panoramic camera; stitch large mosaics of images and photos, e.g. of long walls or large microscopy samples; find control points and optimize parameters with the help of software assistants/wizards
Applications include object recognition, robotic mapping and navigation, image stitching, 3D modeling, gesture recognition, video tracking, individual identification of wildlife and match moving. SIFT keypoints of objects are first extracted from a set of reference images [1] and stored in a database.
The problem is made more difficult when the objects in the scene are in motion relative to the camera(s). A typical application of the correspondence problem occurs in panorama creation or image stitching — when two or more images which only have a small overlap are to be stitched into a larger composite image. In this case it is necessary to ...
Perspective-n-Point [1] is the problem of estimating the pose of a calibrated camera given a set of n 3D points in the world and their corresponding 2D projections in the image. The camera pose consists of 6 degrees-of-freedom (DOF) which are made up of the rotation (roll, pitch, and yaw) and 3D translation of the camera with respect to the world.
Image registration or image alignment algorithms can be classified into intensity-based and feature-based. [3] One of the images is referred to as the moving or source and the others are referred to as the target, fixed or sensed images. Image registration involves spatially transforming the source/moving image(s) to align with the target image.
A simple elastic snake is defined by a set of n points for =, …,, the internal elastic energy term , and the external edge-based energy term .The purpose of the internal energy term is to control the deformations made to the snake, and the purpose of the external energy term is to control the fitting of the contour onto the image.