enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    The connection of maximum likelihood estimation to OLS arises when this distribution is modeled as a multivariate normal. Specifically, assume that the errors ε have multivariate normal distribution with mean 0 and variance matrix σ 2 I .

  3. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  4. Gauss–Markov theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_theorem

    In statistics, the Gauss–Markov theorem (or simply Gauss theorem for some authors) [1] states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. [2]

  5. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    The model is estimated by OLS or another consistent (but inefficient) estimator, and the residuals are used to build a consistent estimator of the errors covariance matrix (to do so, one often needs to examine the model adding additional constraints; for example, if the errors follow a time series process, a statistician generally needs some ...

  6. Best linear unbiased prediction - Wikipedia

    en.wikipedia.org/wiki/Best_linear_unbiased...

    blup vs blue [ edit ] In contrast to the case of best linear unbiased estimation , the "quantity to be estimated", Y ~ k {\displaystyle {\widetilde {Y}}_{k}} , not only has a contribution from a random element but one of the observed quantities, specifically Y k {\displaystyle Y_{k}} which contributes to Y ^ k {\displaystyle {\widehat {Y}}_{k ...

  7. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    Alternative estimators have been proposed in MacKinnon & White (1985) that correct for unequal variances of regression residuals due to different leverage. [11] Unlike the asymptotic White's estimator, their estimators are unbiased when the data are homoscedastic.

  8. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    If the experimental errors, , are uncorrelated, have a mean of zero and a constant variance, , the Gauss–Markov theorem states that the least-squares estimator, ^, has the minimum variance of all estimators that are linear combinations of the observations. In this sense it is the best, or optimal, estimator of the parameters.

  9. Point estimation - Wikipedia

    en.wikipedia.org/wiki/Point_estimation

    When f(x, β 0, β 1, ,,,, β p) is a linear function of the parameters and the x-values are known, least square estimators will be best linear unbiased estimator (BLUE). Again, if we assume that the least square estimates are independently and identically normally distributed, then a linear estimator will be minimum-variance unbiased estimator ...