enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

  3. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/.../Maximum_a_posteriori_estimation

    An estimation procedure that is often claimed to be part of Bayesian statistics is the maximum a posteriori (MAP) estimate of an unknown quantity, that equals the mode of the posterior density with respect to some reference measure, typically the Lebesgue measure.

  4. M-estimator - Wikipedia

    en.wikipedia.org/wiki/M-estimator

    For example, a maximum-likelihood estimate is the point where the derivative of the likelihood function with respect to the parameter is zero; thus, a maximum-likelihood estimator is a critical point of the score function. [8] In many applications, such M-estimators can be thought of as estimating characteristics of the population.

  5. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    But for practical purposes it is more convenient to work with the log-likelihood function in maximum likelihood estimation, in particular since most common probability distributions—notably the exponential family—are only logarithmically concave, [34] [35] and concavity of the objective function plays a key role in the maximization.

  6. German tank problem - Wikipedia

    en.wikipedia.org/wiki/German_tank_problem

    The maximum likelihood estimate for the total number of tanks is N 0 = m, clearly a biased estimate since the true number can be more than this, potentially many more, but cannot be fewer. The marginal likelihood (i.e. marginalized over all models) is infinite , being a tail of the harmonic series .

  7. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    Its final result gives a probability distribution over the latent variables (in the Bayesian style) together with a point estimate for θ (either a maximum likelihood estimate or a posterior mode). A fully Bayesian version of this may be wanted, giving a probability distribution over θ and the latent variables.

  8. Laplace's approximation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_approximation

    where ^ is the location of a mode of the joint target density, also known as the maximum a posteriori or MAP point and is the positive definite matrix of second derivatives of the negative log joint target density at the mode = ^. Thus, the Gaussian approximation matches the value and the log-curvature of the un-normalised target density at the ...

  9. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss).