Search results
Results from the WOW.Com Content Network
The concept of quantum illumination was introduced by Seth Lloyd and collaborators at MIT in 2008. This included a discrete-variable version [2] and a continuous-variable version developed in collaboration with Jeffrey Shapiro, Stefano Pirandola, Saikat Guha and others, [3] the latter version being based on Gaussian states. [4]
Quantum Illumination was first introduced by Seth Lloyd and collaborators at MIT in 2008 [20] and takes advantage of quantum states of light. The basic setup is through target detection in which a sender prepares two entangled system, signal and idler.
Quantum radar is a speculative remote-sensing technology based on quantum-mechanical effects, such as the uncertainty principle or quantum entanglement.Broadly speaking, a quantum radar can be seen as a device working in the microwave range, which exploits quantum features, from the point of view of the radiation source and/or the output detection, and is able to outperform a classical ...
In solid-state physics, a quantum sensor is a quantum device that responds to a stimulus. Usually this refers to a sensor, which has quantized energy levels, uses quantum coherence or entanglement to improve measurements beyond what can be done with classical sensors. [4] There are four criteria for solid-state quantum sensors: [4]
Quantum chemistry computer programs are used in computational chemistry to implement the methods of quantum chemistry. Most include the Hartree–Fock (HF) and some post-Hartree–Fock methods. They may also include density functional theory (DFT), molecular mechanics or semi-empirical quantum chemistry methods .
The photon can be assigned a triplet spin with spin quantum number S = 1. This is similar to, say, the nuclear spin of the 14 N isotope, but with the important difference that the state with M S = 0 is zero, only the states with M S = ±1 are non-zero. Define spin operators:
Quantum tomography is applied on a source of systems, to determine the quantum state of the output of that source. Unlike a measurement on a single system, which determines the system's current state after the measurement (in general, the act of making a measurement alters the quantum state), quantum tomography works to determine the state(s) prior to the measurements.
A similar effect can be produced using less exotic states such as squeezed states. In quantum illumination protocols, two-mode squeezed states are widely studied to overcome the limit of classical states represented in coherent states. In atomic ensembles, spin squeezed states can be used for phase measurements.