Search results
Results from the WOW.Com Content Network
In physics, an absorption edge (also known as an absorption discontinuity or absorption limit) is a sharp discontinuity in the absorption spectrum of a substance. These discontinuities occur at wavelengths where the energy of an absorbed photon corresponds to an electronic transition or ionization potential .
The optical band gap (see below) determines what portion of the solar spectrum a photovoltaic cell absorbs. [18] Strictly, a semiconductor will not absorb photons of energy less than the band gap; whereas most of the photons with energies exceeding the band gap will generate heat. Neither of them contribute to the efficiency of a solar cell.
The Urbach Energy, or Urbach Edge, is a parameter typically denoted , with dimensions of energy, used to quantify energetic disorder in the band edges of a semiconductor. It is evaluated by fitting the absorption coefficient as a function of energy to an exponential function.
Typically, a Tauc plot shows the photon energy E (= hν) on the abscissa (x-coordinate) and the quantity (αE) 1/2 on the ordinate (y-coordinate), where α is the absorption coefficient of the material. Thus, extrapolating this linear region to the abscissa yields the energy of the optical bandgap of the amorphous material.
Band-gap model (blue dotted line), the Urbach-tail extension (red dotted line), and the band-gap model with Urbach tail (black solid line). In the solid-state physics of semiconductors , the Urbach tail is an exponential part in the energy spectrum of the absorption coefficient .
In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...
[1] [3] E g is the optical energy band gap of the material. A, B, and C depend on the band structure of the material. They are positive constants such that 4C − B 2 > 0. Finally, n(∞), a constant greater than unity, represents the value of n at E = ∞.
In spectroscopy, an absorption band is a range of wavelengths, frequencies or energies in the electromagnetic spectrum that are characteristic of a particular transition from initial to final state in a substance. According to quantum mechanics, atoms and molecules can only hold certain defined quantities of energy, or exist in specific states. [1]