Search results
Results from the WOW.Com Content Network
Carbon is capable of forming many allotropes (structurally different forms of the same element) due to its valency (tetravalent). Well-known forms of carbon include diamond and graphite. In recent decades, many more allotropes have been discovered and researched, including ball shapes such as buckminsterfullerene and sheets such as graphene.
Diamond and graphite are two allotropes of carbon: pure forms of the same element that differ in crystalline structure.. Allotropy or allotropism (from Ancient Greek ἄλλος (allos) ' other ' and τρόπος (tropos) ' manner, form ') is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements.
Isomers do not necessarily share similar chemical or physical properties. Two main forms of isomerism are structural (or constitutional) isomerism, in which bonds between the atoms differ; and stereoisomerism (or spatial isomerism), in which the bonds are the same but the relative positions of the atoms differ. Isomeric relationships form a ...
At least five allotropes are uniquely formed at high pressures, two of which are metallic. [6] The number of sulfur allotropes reflects the relatively strong S−S bond of 265 kJ/mol. [1] Furthermore, unlike most elements, the allotropes of sulfur can be manipulated in solutions of organic solvents and are analysed by HPLC. [7]
Iron allotropes, showing the differences in structure. The alpha iron (α-Fe) is a body-centered cubic (BCC) and the gamma iron (γ-Fe) is a face-centered cubic (FCC). At atmospheric pressure, three allotropic forms of iron exist, depending on temperature: alpha iron (α-Fe, ferrite), gamma iron (γ-Fe, austenite), and delta iron (δ-Fe).
Diphosphorus is the gaseous form of phosphorus, and the thermodynamically stable form between 1200 °C and 2000 °C. The dissociation of tetraphosphorus (P 4) begins at lower temperature: the percentage of P 2 at 800 °C is ≈ 1%. At temperatures above about 2000 °C, the diphosphorus molecule begins to dissociate into atomic phosphorus.
Structural equivalences between atoms of a parent molecule reduce the number of positional isomers that can be obtained by replacing those atoms for a different element or group. Thus, for example, the structural equivalence between the six hydrogens of ethane C 2 H 6 means that there is just one structural isomer of ethanol C 2 H 5 OH, not 6.
Chlorine (17 Cl) has 25 isotopes, ranging from 28 Cl to 52 Cl, and two isomers, 34m Cl and 38m Cl. There are two stable isotopes, 35 Cl (75.8%) and 37 Cl (24.2%), giving chlorine a standard atomic weight of 35.45. The longest-lived radioactive isotope is 36 Cl, which has a half-life of 301,000 years. All other isotopes have half-lives under 1 ...