Search results
Results from the WOW.Com Content Network
The gluon is a vector boson, which means it has a spin of 1. While massive spin-1 particles have three polarization states, massless gauge bosons like the gluon have only two polarization states because gauge invariance requires the field polarization to be transverse to the direction that the gluon is traveling.
The name boson was coined by Paul Dirac [3] [4] to commemorate the contribution of Satyendra Nath Bose, an Indian physicist. When Bose was a reader (later professor) at the University of Dhaka, Bengal (now in Bangladesh), [5] [6] he and Albert Einstein developed the theory characterising such particles, now known as Bose–Einstein statistics and Bose–Einstein condensate.
In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. [1] [2] Elementary particles whose interactions are described by a gauge theory interact with each other by the exchange of gauge bosons, usually as virtual particles. Photons, W and Z bosons, and gluons are gauge
boson either lowers or raises the electric charge of the emitting particle by one unit, and also alters the spin by one unit. At the same time, the emission or absorption of a W ± boson can change the type of the particle – for example changing a strange quark into an up quark.
In the Standard Model, vector (spin-1) bosons (gluons, photons, and the W and Z bosons) mediate forces, whereas the Higgs boson (spin-0) is responsible for the intrinsic mass of particles. Bosons differ from fermions in the fact that multiple bosons can occupy the same quantum state ( Pauli exclusion principle ).
The force carrier particle of the strong interaction is the gluon, a massless gauge boson. Gluons are thought to interact with quarks and other gluons by way of a type of charge called color charge. Color charge is analogous to electromagnetic charge, but it comes in three types (±red, ±green, and ±blue) rather than one, which results in ...
q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle labels separated by / one particle label is chosen.
Feynman diagram of the fusion of two electroweak vector bosons to the scalar Higgs boson, which is a prominent process of the generation of Higgs bosons at particle accelerators (q: quark particle, W and Z: vector bosons of the electroweak interaction, H 0: Higgs boson) The W and Z particles interact with the Higgs boson as shown in the Feynman ...