Search results
Results from the WOW.Com Content Network
Maxwell's demon can (hypothetically) reduce the thermodynamic entropy of a system by using information about the states of individual molecules; but, as Landauer (from 1961) and co-workers [20] have shown, to function the demon himself must increase thermodynamic entropy in the process, by at least the amount of Shannon information he proposes ...
Cross-entropy can be used to define a loss function in machine learning and optimization. Mao, Mohri, and Zhong (2023) give an extensive analysis of the properties of the family of cross-entropy loss functions in machine learning, including theoretical learning guarantees and extensions to adversarial learning. [3]
In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]
It's easy to check that the logistic loss and binary cross-entropy loss (Log loss) are in fact the same (up to a multiplicative constant ()). The cross-entropy loss is closely related to the Kullback–Leibler divergence between the empirical distribution and the predicted distribution.
Knowledge distillation consists of training a smaller network, called the distilled model, on a data set called the transfer set (which is different than the data set used to train the large model) using cross-entropy as the loss function between the output of the distilled model (|) and the output of the large model ^ (|) on the same record ...
Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.
Entropy of a Bernoulli trial (in shannons) as a function of binary outcome probability, called the binary entropy function.. In information theory, the binary entropy function, denoted or (), is defined as the entropy of a Bernoulli process (i.i.d. binary variable) with probability of one of two values, and is given by the formula:
Equivalently, the min-entropy () is the largest real number b such that all events occur with probability at most . The name min-entropy stems from the fact that it is the smallest entropy measure in the family of Rényi entropies. In this sense, it is the strongest way to measure the information content of a discrete random variable.