enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of character tables for chemically important 3D point ...

    en.wikipedia.org/wiki/List_of_character_tables...

    A and B are singly degenerate representations, with the former transforming symmetrically around the principal axis of the group, and the latter asymmetrically. E, T, G, H, ... are doubly, triply, quadruply, quintuply, ... degenerate representations. g and u subscripts denote symmetry and antisymmetry, respectively, with respect to a center of ...

  3. Diradical - Wikipedia

    en.wikipedia.org/wiki/Diradical

    In chemistry, a diradical is a molecular species with two electrons occupying molecular orbitals (MOs) which are degenerate. [1] [2] The term "diradical" is mainly used to describe organic compounds, where most diradicals are extremely reactive and non-Kekulé molecules that are rarely isolated.

  4. Crystal field theory - Wikipedia

    en.wikipedia.org/wiki/Crystal_field_theory

    It arises due to the fact that when the d-orbitals are split in a ligand field (as described above), some of them become lower in energy than before with respect to a spherical field known as the barycenter in which all five d-orbitals are degenerate. For example, in an octahedral case, the t 2g set becomes lower in energy than the orbitals in ...

  5. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    Molecular orbitals are said to be degenerate if they have the same energy. For example, in the homonuclear diatomic molecules of the first ten elements, the molecular orbitals derived from the p x and the p y atomic orbitals result in two degenerate bonding orbitals (of low energy) and two degenerate antibonding orbitals (of high energy). [13]

  6. Diradicaloid - Wikipedia

    en.wikipedia.org/wiki/Diradicaloid

    However, when the frontier molecular orbitals are degenerate or nearly degenerate, the lowest-energy singlet state wavefunction must account for multiple electronic configurations (see electronic correlation). Thus, is most accurately represented as a combination of Slater determinants.

  7. Square planar molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Square_planar_molecular...

    Representative d-orbital splitting diagrams for square planar complexes featuring σ-donor (left) and σ+π-donor (right) ligands. A general d-orbital splitting diagram for square planar (D 4h) transition metal complexes can be derived from the general octahedral (O h) splitting diagram, in which the d z 2 and the d x 2 −y 2 orbitals are degenerate and higher in energy than the degenerate ...

  8. Multiplicity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(chemistry)

    For example, the ground state of a carbon atom is 3 P (Term symbol). The superscript three (read as triplet) indicates that the multiplicity 2S+1 = 3, so that the total spin S = 1. This spin is due to two unpaired electrons, as a result of Hund's rule which favors the single filling of degenerate orbitals. The triplet consists of three states ...

  9. Stark effect - Wikipedia

    en.wikipedia.org/wiki/Stark_effect

    Degenerate zeroth-order states of opposite parity occur for excited hydrogen-like (one-electron) atoms or Rydberg states. Neglecting fine-structure effects, such a state with the principal quantum number n is n 2 -fold degenerate and n 2 = ∑ ℓ = 0 n − 1 ( 2 ℓ + 1 ) , {\displaystyle n^{2}=\sum _{\ell =0}^{n-1}(2\ell +1),} where ℓ ...