Search results
Results from the WOW.Com Content Network
Python has built-in set and frozenset types since 2.4, and since Python 3.0 and 2.7, supports non-empty set literals using a curly-bracket syntax, e.g.: {x, y, z}; empty sets must be created using set(), because Python uses {} to represent the empty dictionary.
The PRNG-generated sequence is not truly random, because it is completely determined by an initial value, called the PRNG's seed (which may include truly random values). Although sequences that are closer to truly random can be generated using hardware random number generators , pseudorandom number generators are important in practice for their ...
A random seed (or seed state, or just seed) is a number (or vector) used to initialize a pseudorandom number generator. A pseudorandom number generator's number sequence is completely determined by the seed: thus, if a pseudorandom number generator is later reinitialized with the same seed, it will produce the same sequence of numbers.
One iteration of the middle-square method, showing a 6-digit seed, which is then squared, and the resulting value has its middle 6 digits as the output value (and also as the next seed for the sequence). Directed graph of all 100 2-digit pseudorandom numbers obtained using the middle-square method with n = 2.
Free software portal; The tidyverse is a collection of open source packages for the R programming language introduced by Hadley Wickham [1] and his team that "share an underlying design philosophy, grammar, and data structures" of tidy data. [2]
Dice are an example of a mechanical hardware random number generator. When a cubical die is rolled, a random number from 1 to 6 is obtained. Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols is generated that cannot be reasonably predicted better than by random chance.
Noam Nisan (1992) showed that this derandomization can actually be achieved with a pseudorandom generator of seed length () that fools all ()-space machines. Nisan's generator has been used by Saks and Zhou (1999) to show that probabilistic log-space computation can be simulated deterministically in space O ( log 1.5 n ...
In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.