enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...

  3. Richter scale - Wikipedia

    en.wikipedia.org/wiki/Richter_scale

    The Richter scale [1] (/ ˈ r ɪ k t ər /), also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, [2] is a measure of the strength of earthquakes, developed by Charles Richter in collaboration with Beno Gutenberg, and presented in Richter's landmark 1935 paper, where he called it the "magnitude scale". [3]

  4. Overburden pressure - Wikipedia

    en.wikipedia.org/wiki/Overburden_pressure

    Overburden pressure is a geology term that denotes the pressure caused by the weight of the overlying layers of material at a specific depth under the earth's surface. [1] Overburden pressure is also called lithostatic pressure , or vertical stress.

  5. Vertical pressure variation - Wikipedia

    en.wikipedia.org/wiki/Vertical_pressure_variation

    A relatively simple version [1] of the vertical fluid pressure variation is simply that the pressure difference between two elevations is the product of elevation change, gravity, and density. The equation is as follows: =, where P is pressure, ρ is density, g is acceleration of gravity, and; h is height.

  6. Adams–Williamson equation - Wikipedia

    en.wikipedia.org/wiki/Adams–Williamson_equation

    Given the average density of rocks at the Earth's surface and profiles of the P-wave and S-wave speeds as function of depth, it can predict how density increases with depth. [2] It assumes that the compression is adiabatic and that the Earth is spherically symmetric, homogeneous, and in hydrostatic equilibrium. It can also be applied to ...

  7. Surface gravity - Wikipedia

    en.wikipedia.org/wiki/Surface_gravity

    These proportionalities may be expressed by the formula: where g is the surface gravity of an object, expressed as a multiple of the Earth's, m is its mass, expressed as a multiple of the Earth's mass (5.976 × 10 24 kg) and r its radius, expressed as a multiple of the Earth's (mean) radius (6,371 km). [9]

  8. AOL Mail

    mail.aol.com/d?reason=invalid_cred

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Gravity_anomaly

    The gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity measured at every point on its surface would be given precisely by a simple algebraic expression.