enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    The first algorithm for random decision forests was created in 1995 by Tin Kam Ho [1] using the random subspace method, [2] which, in Ho's formulation, is a way to implement the "stochastic discrimination" approach to classification proposed by Eugene Kleinberg.

  3. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    There are several important factors to consider when designing a random forest. If the trees in the random forests are too deep, overfitting can still occur due to over-specificity. If the forest is too large, the algorithm may become less efficient due to an increased runtime. Random forests also do not generally perform well when given sparse ...

  4. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    The results shows in paper( Confidence Intervals for Random Forests: The jackknife and the Infinitesimal Jackknife ) that m = 57 random forest appears to be quite ...

  5. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    SCiForest (Isolation Forest with Split-selection Criterion) is an extension of the original Isolation Forest algorithm, specifically designed to target clustered anomalies. It introduces a split-selection criterion and uses random hyper-planes that are non-axis-parallel to the original attributes.

  6. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    An ensemble of models employing the random subspace method can be constructed using the following algorithm: Let the number of training points be N and the number of features in the training data be D. Let L be the number of individual models in the ensemble. For each individual model l, choose n l (n l < N) to be the number of input points for l.

  7. Random graph - Wikipedia

    en.wikipedia.org/wiki/Random_graph

    A random graph is obtained by starting with a set of n isolated vertices and adding successive edges between them at random. The aim of the study in this field is to determine at what stage a particular property of the graph is likely to arise. [3] Different random graph models produce different probability distributions on graphs.

  8. Random tree - Wikipedia

    en.wikipedia.org/wiki/Random_tree

    In mathematics and computer science, a random tree is a tree or arborescence that is formed by a stochastic process. Types of random trees include: Types of random trees include: Uniform spanning tree , a spanning tree of a given graph in which each different tree is equally likely to be selected

  9. Gradient boosting - Wikipedia

    en.wikipedia.org/wiki/Gradient_boosting

    [1] [2] When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest. [1] As with other boosting methods, a gradient-boosted trees model is built in stages, but it generalizes the other methods by allowing optimization of an arbitrary differentiable loss function.