Search results
Results from the WOW.Com Content Network
The graph of an involution (on the real numbers) is symmetric across the line y = x. This is due to the fact that the inverse of any general function will be its reflection over the line y = x. This can be seen by "swapping" x with y. If, in particular, the function is an involution, then its graph is its own reflection.
For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).
Greek mathematics refers to mathematics texts and ideas stemming from the Archaic through the Hellenistic and Roman periods, mostly from the 5th century BC to the 6th century AD, around the shores of the Mediterranean.
An inverse number may refer to: The multiplicative inverse of a number; A type of grammatical number This page was last edited on 28 ...
P ' is the inverse of P with respect to the circle. To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P ...
Many areas of mathematics began with the study of real world problems, before the underlying rules and concepts were identified and defined as abstract structures.For example, geometry has its origins in the calculation of distances and areas in the real world; algebra started with methods of solving problems in arithmetic.
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
A simple example of the use of this formula is counting the number of reduced fractions 0 < a / b < 1, where a and b are coprime and b ≤ n. If we let f(n) be this number, then g(n) is the total number of fractions 0 < a / b < 1 with b ≤ n, where a and b are not necessarily coprime.