Search results
Results from the WOW.Com Content Network
More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.
Then given any upper bound X of A 0, A 1, … in P(ω)/Fin, we can find a lesser upper bound, by removing from a representative for X one element of each a n. Therefore the A n have no supremum. Properties of complete Boolean algebras
The least-upper-bound property states that every nonempty subset of real numbers having an upper bound (or bounded above) must have a least upper bound (or supremum) in the set of real numbers. The rational number line Q does not have the least upper bound property. An example is the subset of rational numbers
An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...
The seldom-considered dual notion to a dcpo is the filtered-complete poset. Dcpos with a least element ("pointed dcpos") are one of the possible meanings of the phrase complete partial order (cpo). If every subset that has some upper bound has also a least upper bound, then the respective poset is called bounded complete. The term is used ...
Then has an upper bound (, for example, or ) but no least upper bound in : If we suppose is the least upper bound, a contradiction is immediately deduced because between any two reals and (including and ) there exists some rational , which itself would have to be the least upper bound (if >) or a member of greater than (if <).
The greatest lower bound of the set {x, y} is called the meet of x and y, denoted x ∧ y. Replacing "greatest lower bound" with "least upper bound" results in the dual concept of a join-semilattice. The least upper bound of {x, y} is called the join of x and y, denoted x ∨ y. Meet and join are binary operations on S.
In particular, it satisfies a sort of least-upper-bound axiom that says, in effect: Every nonempty internal set that has an internal upper bound has a least internal upper bound. Countability of the set of all internal numbers (in conjunction with the fact that those form a densely ordered set) implies that that set does not satisfy the full ...