Search results
Results from the WOW.Com Content Network
Acyl substitution occurs when a nucleophile attacks a carbon that is doubly bonded to one oxygen and singly bonded to another oxygen (can be N or S or a halogen), called an acyl group. The nucleophile attacks the carbon causing the double bond to break into a single bond. The double can then reform, kicking off the leaving group in the process.
A single-displacement reaction, also known as single replacement reaction or exchange reaction, is an archaic concept in chemistry. It describes the stoichiometry of some chemical reactions in which one element or ligand is replaced by an atom or group. [1] [2] [3] It can be represented generically as:
The unimolecular nucleophilic substitution (S N 1) reaction is a substitution reaction in organic chemistry. The Hughes-Ingold symbol of the mechanism expresses two properties—"S N " stands for " nucleophilic substitution ", and the "1" says that the rate-determining step is unimolecular .
A neutralization reaction is a type of double replacement reaction. A neutralization reaction occurs when an acid reacts with an equal amount of a base. This reaction usually produces a salt. One example, hydrochloric acid reacts with disodium iron tetracarbonyl to produce the iron dihydride:
Allylic shifts become the dominant reaction pathway when there is substantial resistance to a normal (non-allylic) substitution. For nucleophilic substitution, such resistance is known when there is substantial steric hindrance at or around the leaving group, or if there is a geminal substituent destabilizing an accumulation of positive charge.
Stability index S of an amino acid is calculated based on physicochemical distances of this amino acid and its alternatives than can mutate through single nucleotide substitution and probabilities to replace into these amino acids. Based on Grantham's distance the most immutable amino acid is cysteine, and the most prone to undergo exchange is ...
There is a certain level of competition between the elimination reaction and nucleophilic substitution. More precisely, there are competitions between E2 and S N 2 and also between E1 and S N 1. Generally, elimination is favored over substitution when steric hindrance around the α-carbon increases. a stronger base is used.
The bimolecular nucleophilic substitution (S N 2) is a type of reaction mechanism that is common in organic chemistry. In the S N 2 reaction, a strong nucleophile forms a new bond to an sp 3 -hybridised carbon atom via a backside attack, all while the leaving group detaches from the reaction center in a concerted (i.e. simultaneous) fashion.