Search results
Results from the WOW.Com Content Network
This page provides supplementary chemical data on lead(II) chloride. Structure and properties. Molecular structure ... 312.74 Å 3: Properties Dipole moment? D:
Solid lead(II) chloride precipitates upon addition of aqueous chloride sources (HCl, NaCl, KCl) to aqueous solutions of lead(II) compounds, such as lead(II) nitrate and lead(II) acetate: Pb(NO 3) 2 + 2 HCl → PbCl 2 (s) + 2 HNO 3. It also forms by treatment of basic lead(II) compounds such as Lead(II) oxide and lead(II) carbonate. Lead dioxide ...
The chloride of this oxidation state is formed only with difficulty and decomposes readily into lead(II) chloride and chlorine gas. The bromide and iodide of lead(IV) are not known to exist. [3] Lead dioxide dissolves in alkali hydroxide solutions to form the corresponding plumbates. [2] PbO 2 + 2 OH − + 2 H 2 O → Pb(OH) 2− 6
The grain per gallon (gpg) is a unit of water hardness defined as 1 grain (64.8 milligrams) of calcium carbonate dissolved in 1 US gallon of water (3.785412 L). It translates into 1 part in about 58,000 parts of water or 17.1 parts per million (ppm). Also called Clark degree (in terms of an imperial gallon).
Substance Formula 0 °C 10 °C 20 °C 30 °C 40 °C 50 °C 60 °C 70 °C 80 °C 90 °C 100 °C Barium acetate: Ba(C 2 H 3 O 2) 2: 58.8: 62: 72: 75: 78.5: 77: 75
Lead chloride may refer to: Lead(II) chloride (plumbous chloride), mineral name: cotunnite. Lead(IV) chloride (plumbic chloride) Hexachloroplumbate(IV) (dianion)
1.80 [16] 1.26: battery, Fluoride-ion [citation needed] 1.7: 2.8: battery, Hydrogen closed cycle H fuel cell [17] 1.62: Hydrazine decomposition (as monopropellant) 1.6: 1.6: Ammonium nitrate decomposition (as monopropellant) 1.4: 2.5: Thermal Energy Capacity of Molten Salt: 1 [citation needed] 98% [18] Molecular spring approximate [citation ...
Lead perchlorate trihydrate is produced by the reaction of lead(II) oxide, lead carbonate, or lead nitrate by perchloric acid: . Pb(NO 3) 2 + HClO 4 → Pb(ClO 4) 2 + HNO 3. The excess perchloric acid was removed by first heating the solution to 125 °C, then heating it under moist air at 160 °C to remove the perchloric acid by converting the acid to the dihydrate.