enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.

  3. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    In classical thermodynamics, entropy is defined in terms of macroscopic measurements and makes no reference to any probability distribution, which is central to the definition of information entropy. The connection between thermodynamics and what is now known as information theory was first made by Ludwig Boltzmann and expressed by his equation:

  4. Entropy and life - Wikipedia

    en.wikipedia.org/wiki/Entropy_and_life

    Research concerning the relationship between the thermodynamic quantity entropy and both the origin and evolution of life began around the turn of the 20th century. In 1910 American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of ...

  5. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Many entropy-based measures have been shown to distinguish between different structural regions of the genome, differentiate between coding and non-coding regions of DNA, and can also be applied for the recreation of evolutionary trees by determining the evolutionary distance between different species.

  6. Negentropy - Wikipedia

    en.wikipedia.org/wiki/Negentropy

    This quantity is the amount of entropy that may be increased without changing an internal energy or increasing its volume. [9] In other words, it is a difference between maximum possible, under assumed conditions, entropy and its actual entropy. It corresponds exactly to the definition of negentropy adopted in statistics and information theory.

  7. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    The relationship between entropy, order, and disorder in the Boltzmann equation is so clear among physicists that according to the views of thermodynamic ecologists Sven Jorgensen and Yuri Svirezhev, "it is obvious that entropy is a measure of order or, most likely, disorder in the system."

  8. Living systems - Wikipedia

    en.wikipedia.org/wiki/Living_systems

    LST analyzes the irregularities or "organizational pathologies" of systems functioning (e.g., system stress and strain, feedback irregularities, information–input overload). It explicates the role of entropy in social research while it equates negentropy with information and order. It emphasizes both structure and process, as well as their ...

  9. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    Thermodynamic entropy is equal to the Boltzmann constant times the information entropy expressed in nats. The information entropy expressed with the unit shannon (Sh) is equal to the number of yes–no questions that need to be answered in order to determine the microstate from the macrostate. The concepts of "disorder" and "spreading" can be ...