Search results
Results from the WOW.Com Content Network
Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.
In classical thermodynamics, entropy is defined in terms of macroscopic measurements and makes no reference to any probability distribution, which is central to the definition of information entropy. The connection between thermodynamics and what is now known as information theory was first made by Boltzmann and expressed by his equation:
The mutual information is used to learn the structure of Bayesian networks/dynamic Bayesian networks, which is thought to explain the causal relationship between random variables, as exemplified by the GlobalMIT toolkit: [36] learning the globally optimal dynamic Bayesian network with the Mutual Information Test criterion.
To do this, one must acknowledge the difference between the measured entropy of a system—which depends only on its macrostate (its volume, temperature etc.)—and its information entropy, [6] which is the amount of information (number of computer bits) needed to describe the exact microstate of the system.
In this context, either an information-theoretical measure, such as functional clusters (Gerald Edelman and Giulio Tononi's functional clustering model and dynamic core hypothesis (DCH) [47]) or effective information (Tononi's integrated information theory (IIT) of consciousness [48] [49] [50]), is defined (on the basis of a reentrant process ...
Shannon entropy (information entropy), being the expected value of the information of an event, is inherently a quantity of the same type and with a unit of information. The International System of Units, by assigning the same unit (joule per kelvin) both to heat capacity and to thermodynamic entropy implicitly treats information entropy as a quantity of dimension one, with 1 nat = 1.
In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .
An information diagram is a type of Venn diagram used in information theory to illustrate relationships among Shannon's basic measures of information: entropy, joint entropy, conditional entropy and mutual information. [1] [2] Information