Ad
related to: what is bisects in geometry termskutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Line DE bisects line AB at D, line EF is a perpendicular bisector of segment AD at C, and line EF is the interior bisector of right angle AED. In geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size).
Bisection, in geometry, dividing something into two equal parts; Bisection method, a root-finding algorithm; Equidistant set; ... additional terms may apply.
In geometry, the angle bisector theorem is concerned with the relative lengths of the two segments that a triangle's side is divided into by a line that bisects the opposite angle. It equates their relative lengths to the relative lengths of the other two sides of the triangle.
In the concave case, the line through one of the diagonals bisects the other.) One diagonal is a line of symmetry. It divides the quadrilateral into two congruent triangles that are mirror images of each other. [7] One diagonal bisects both of the angles at its two ends. [7]
The triangle medians and the centroid.. In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. . Every triangle has exactly three medians, one from each vertex, and they all intersect at the triangle's cent
A line that is an angle bisector is equidistant from both of its lines when measuring by the perpendicular. At the point where two bisectors intersect, this point is perpendicularly equidistant from the final angle's forming lines (because they are the same distance from this angles opposite edge), and therefore lies on its angle bisector line.
Hypercycles in hyperbolic geometry have some properties similar to those of circles in Euclidean geometry: A line perpendicular to a chord of a hypercycle at its midpoint is a radius and it bisects the arc subtended by the chord. Let AB be the chord and M its middle point.
The center of a conic, if it exists, is a point that bisects all the chords of the conic that pass through it. This property can be used to calculate the coordinates of the center, which can be shown to be the point where the gradient of the quadratic function Q vanishes—that is, [8] = [,] = [,].
Ad
related to: what is bisects in geometry termskutasoftware.com has been visited by 10K+ users in the past month