Search results
Results from the WOW.Com Content Network
In computer engineering, instruction pipelining is a technique for implementing instruction-level parallelism within a single processor. Pipelining attempts to keep every part of the processor busy with some instruction by dividing incoming instructions into a series of sequential steps (the eponymous "pipeline") performed by different processor units with different parts of instructions ...
In computer science, instruction scheduling is a compiler optimization used to improve instruction-level parallelism, which improves performance on machines with instruction pipelines. Put more simply, it tries to do the following without changing the meaning of the code:
The main common concept of each design is a five-stage execution instruction pipeline. During operation, each pipeline stage works on one instruction at a time. Each of these stages consists of a set of flip-flops to hold state, and combinational logic that operates on the outputs of those flip-flops.
Each instruction processes one data item, but there are multiple execution units within each CPU thus multiple instructions can be processing separate data items concurrently. Superscalar CPU design emphasizes improving the instruction dispatcher accuracy and allowing it to keep the multiple execution units in use at all times.
When a next-line predictor points to aligned groups of 2, 4, or 8 instructions, the branch target will usually not be the first instruction fetched, and so the initial instructions fetched are wasted. Assuming for simplicity, a uniform distribution of branch targets, 0.5, 1.5, and 3.5 instructions fetched are discarded, respectively.
In computing, a pipeline or data pipeline [1] is a set of data processing elements connected in series, where the output of one element is the input of the next one. The elements of a pipeline are often executed in parallel or in time-sliced fashion. Some amount of buffer storage is often inserted between elements. Computer-related pipelines ...
Very long instruction word (VLIW) refers to instruction set architectures that are designed to exploit instruction-level parallelism (ILP). A VLIW processor allows programs to explicitly specify instructions to execute in parallel, whereas conventional central processing units (CPUs) mostly allow programs to specify instructions to execute in sequence only.
Instruction-level parallelism (ILP) is the parallel or simultaneous execution of a sequence of instructions in a computer program. More specifically, ILP refers to the average number of instructions run per step of this parallel execution.