enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Damping capacity - Wikipedia

    en.wikipedia.org/wiki/Damping_capacity

    Damping capacity is a mechanical property of materials that measure a material's ability to dissipate elastic strain energy during mechanical vibration or wave propagation. When ranked according to damping capacity, materials may be roughly categorized as either high- or low-damping.

  3. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    The critical damping plot is the bold red curve. The plots are normalised for L = 1, C = 1 and ω 0 = 1. The differential equation has the characteristic equation, [7] + + =. The roots of the equation in s-domain are, [7]

  4. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    The damping ratio provides a mathematical means of expressing the level of damping in a system relative to critical damping. For a damped harmonic oscillator with mass m, damping coefficient c, and spring constant k, it can be defined as the ratio of the damping coefficient in the system's differential equation to the critical damping coefficient:

  5. Shock response spectrum - Wikipedia

    en.wikipedia.org/wiki/Shock_response_spectrum

    Different damping ratios produce different SRSs for the same shock waveform. Zero damping will produce a maximum response. Very high damping produces a very boring SRS: A horizontal line. The level of damping is demonstrated by the "quality factor", Q which can also be thought of transmissibility in sinusoidal vibration case.

  6. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  7. Coulomb damping - Wikipedia

    en.wikipedia.org/wiki/Coulomb_damping

    Coulomb damping dissipates energy constantly because of sliding friction. The magnitude of sliding friction is a constant value; independent of surface area, displacement or position, and velocity. The system undergoing Coulomb damping is periodic or oscillating and restrained by the sliding friction.

  8. Landau–Lifshitz–Gilbert equation - Wikipedia

    en.wikipedia.org/wiki/Landau–Lifshitz–Gilbert...

    It is a modified version by Gilbert of the original equation of Landau and Lifshitz. [1] The LLG equation is similar to the Bloch equation, but they differ in the form of the damping term. The LLG equation describes a more general scenario of magnetization dynamics beyond the simple Larmor precession.

  9. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    = is called the "damping ratio". Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be: