Search results
Results from the WOW.Com Content Network
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
Trajectory of a particle with initial position vector r 0 and velocity v 0, subject to constant acceleration a, all three quantities in any direction, and the position r(t) and velocity v(t) after time t. The initial position, initial velocity, and acceleration vectors need not be collinear, and the equations of motion take an almost identical ...
Solving (1) is an elementary differential equation, thus the steps leading to a unique solution for v x and, subsequently, x will not be enumerated. Given the initial conditions = (where v x0 is understood to be the x component of the initial velocity) and = for =:
In the solution, c 1 and c 2 are two constants determined by the initial conditions (specifically, the initial position at time t = 0 is c 1, while the initial velocity is c 2 ω), and the origin is set to be the equilibrium position.
Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative ...
The Hertzian differential equations predict that if two balls strike three, the fifth and fourth balls will leave with velocities of 1.14 and 0.80 times the initial velocity. [7] This is 2.03 times more kinetic energy in the fifth ball than the fourth ball, which means the fifth ball would swing twice as high in the vertical direction as the ...
If the cannonball is launched with a greater initial horizontal velocity, then it will travel farther before it hits the ground, but it will still hit the ground in the same amount of time. However, if the cannonball is launched with an even larger initial velocity, then the curvature of the Earth becomes significant: the ground itself will ...
For rod length 6" and crank radius 2" (as shown in the example graph below), numerically solving the acceleration zero-crossings finds the velocity maxima/minima to be at crank angles of ±73.17615°. Then, using the triangle law of sines, it is found that the rod-vertical angle is 18.60647° and the crank-rod angle is 88.21738°. Clearly, in ...