enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antiderivative (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Antiderivative_(complex...

    Otherwise, a function is an antiderivative of the zero function if and only if it is constant on each connected component of (those constants need not be equal). This observation implies that if a function g : U → C {\displaystyle g:U\to \mathbb {C} } has an antiderivative, then that antiderivative is unique up to addition of a function which ...

  3. Risch algorithm - Wikipedia

    en.wikipedia.org/wiki/Risch_Algorithm

    Finding an elementary antiderivative is very sensitive to details. For instance, the following algebraic function (posted to sci.math.symbolic by Henri Cohen in 1993 [3]) has an elementary antiderivative, as Wolfram Mathematica since version 13 shows (however, Mathematica does not use the Risch algorithm to compute this integral): [4] [5]

  4. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...

  5. Antiderivative - Wikipedia

    en.wikipedia.org/wiki/Antiderivative

    The inverse chain rule method (a special case of integration by substitution) Integration by parts (to integrate products of functions) Inverse function integration (a formula that expresses the antiderivative of the inverse f −1 of an invertible and continuous function f, in terms of f −1 and the antiderivative of f).

  6. List of integrals of exponential functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    (Note that the value of the expression is independent of the value of n, which is why it does not appear in the integral.) ∫ x x ⋅ ⋅ x ⏟ m d x = ∑ n = 0 m ( − 1 ) n ( n + 1 ) n − 1 n !

  7. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    The integral here is a complex contour integral which is path-independent because ⁡ is holomorphic on the whole complex plane . In many applications, the function argument is a real number, in which case the function value is also real.

  8. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    The following Python code with the SymPy library will allow for calculation of the values of and to 20 digits of precision: from sympy import * def lag_weights_roots ( n ): x = Symbol ( "x" ) roots = Poly ( laguerre ( n , x )) . all_roots () x_i = [ rt . evalf ( 20 ) for rt in roots ] w_i = [( rt / (( n + 1 ) * laguerre ( n + 1 , rt )) ** 2 ...

  9. Constant of integration - Wikipedia

    en.wikipedia.org/wiki/Constant_of_integration

    In calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function () to indicate that the indefinite integral of () (i.e., the set of all antiderivatives of ()), on a connected domain, is only defined up to an additive constant.

  1. Related searches formula for antiderivative power rule of zero 3 in python 4 in calculator

    anti derivative formulaanti derivative physics
    non continuous functions antiderivativepower rule in math
    what is an antiderivative