enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    Each orbital in an atom is characterized by a set of values of three quantum numbers n, ℓ, and m ℓ, which respectively correspond to electron's energy, its orbital angular momentum, and its orbital angular momentum projected along a chosen axis (magnetic quantum number). The orbitals with a well-defined magnetic quantum number are generally ...

  3. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    In chemistry and spectroscopy, ℓ = 0 is called s orbital, ℓ = 1, p orbital, ℓ = 2, d orbital, and ℓ = 3, f orbital. The value of ℓ ranges from 0 to n − 1, so the first p orbital (ℓ = 1) appears in the second electron shell (n = 2), the first d orbital (ℓ = 2) appears in the third shell (n = 3), and so on: [13]

  4. Wigner–Eckart theorem - Wikipedia

    en.wikipedia.org/wiki/Wigner–Eckart_theorem

    If an electron is in one of the 2p orbitals, rotating the system will generally move it into a different 2p orbital (usually it will wind up in a quantum superposition of all three basis states, m = +1, 0, −1). Similarly, if an electron is in one of the 4d orbitals, rotating the system will move it into a different 4d orbital.

  5. Magnetic quantum number - Wikipedia

    en.wikipedia.org/wiki/Magnetic_quantum_number

    Other magnetic quantum numbers are similarly defined, such as m j for the z-axis component the total electronic angular momentum j, [1] and m I for the nuclear spin I. [2] Magnetic quantum numbers are capitalized to indicate totals for a system of particles, such as M L or m L for the total z-axis orbital angular momentum of all the electrons ...

  6. Azimuthal quantum number - Wikipedia

    en.wikipedia.org/wiki/Azimuthal_quantum_number

    A planar node can be described in an electromagnetic wave as the midpoint between crest and trough, which has zero magnitudes. In an s orbital, no nodes go through the nucleus, therefore the corresponding azimuthal quantum number ℓ takes the value of 0. In a p orbital, one node traverses the nucleus and therefore ℓ has the value of 1.

  7. Spherical harmonics - Wikipedia

    en.wikipedia.org/wiki/Spherical_harmonics

    Imposing this regularity in the solution Θ of the second equation at the boundary points of the domain is a Sturm–Liouville problem that forces the parameter λ to be of the form λ = ℓ (ℓ + 1) for some non-negative integer with ℓ ≥ |m|; this is also explained below in terms of the orbital angular momentum.

  8. Cubic harmonic - Wikipedia

    en.wikipedia.org/wiki/Cubic_harmonic

    The seven f-orbitals are atomic orbitals with an angular momentum quantum number ℓ = 3. often expressed like = () The angular part of the f-orbitals are the cubic harmonics (). In many cases different linear combinations of spherical harmonics are chosen to construct a cubic f-orbital basis set.

  9. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    The Bohr–Sommerfeld model was fundamentally inconsistent and led to many paradoxes. The magnetic quantum number measured the tilt of the orbital plane relative to the xy plane, and it could only take a few discrete values. This contradicted the obvious fact that an atom could be turned this way and that relative to the coordinates without ...