Search results
Results from the WOW.Com Content Network
The unit of momentum is the product of the units of mass and velocity. ... In about 530 AD, John Philoponus developed a concept of momentum in On Physics, ...
Cartesian z-axis basis unit vector unitless angular momentum: newton meter second (N⋅m⋅s or kg⋅m 2 ⋅s −1) inductance: henry (H) luminosity: watt (W) Lagrangian: joule (J) Lagrangian density: joule per cubic meter (J/m 3) length: meter (m) ℓ
The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s). The corresponding English engineering unit is the pound-second (lbf⋅s), and in the British Gravitational System, the unit is the slug-foot per second (slug⋅ft/s).
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
The newton-second (also newton second; symbol: N⋅s or N s) [1] is the unit of impulse in the International System of Units (SI). It is dimensionally equivalent to the momentum unit kilogram-metre per second (kg⋅m/s). One newton-second corresponds to a one-newton force applied for one second.
Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.
By dividing a particle's kinetic energy in electronvolts by the fundamental constant c (the speed of light), one can describe the particle's momentum in units of eV/c. [5] In natural units in which the fundamental velocity constant c is numerically 1, the c may informally be omitted to express momentum using the unit electronvolt.
Since m 0 does not change from frame to frame, the energy–momentum relation is used in relativistic mechanics and particle physics calculations, as energy and momentum are given in a particle's rest frame (that is, E ′ and p ′ as an observer moving with the particle would conclude to be) and measured in the lab frame (i.e. E and p as ...