enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Molar specific heat capacity (isochoric) C nV = / J⋅K⋅ −1 mol −1: ML 2 T −2 Θ −1 N −1: Specific latent heat: L = / J⋅kg −1: L 2 T −2: Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index, Laplace coefficient

  4. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    To achieve the same increase in temperature, more heat energy is needed for a gram of that substance than for a gram of a monatomic gas. Thus, the specific heat capacity per mole of a polyatomic gas depends both on the molecular mass and the number degrees of freedom of the molecules. [23] [24] [25]

  5. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The Mayer relation states that the specific heat capacity of a gas at constant volume is slightly less than at constant pressure. This relation was built on the reasoning that energy must be supplied to raise the temperature of the gas and for the gas to do work in a volume changing case.

  6. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).

  7. Rüchardt experiment - Wikipedia

    en.wikipedia.org/wiki/Rüchardt_Experiment

    The Rüchardt experiment, [1] [2] [3] invented by Eduard Rüchardt, is a famous experiment in thermodynamics, which determines the ratio of the molar heat capacities of a gas, i.e. the ratio of (heat capacity at constant pressure) and (heat capacity at constant volume) and is denoted by (gamma, for ideal gas) or (kappa, isentropic exponent, for real gas).

  8. Molar heat capacity - Wikipedia

    en.wikipedia.org/wiki/Molar_heat_capacity

    A closely related property of a substance is the heat capacity per mole of atoms, or atom-molar heat capacity, in which the heat capacity of the sample is divided by the number of moles of atoms instead of moles of molecules. So, for example, the atom-molar heat capacity of water is 1/3 of its molar heat capacity, namely 25.3 J⋅K −1 ⋅mol ...

  9. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    In those contexts, the unit of heat capacity is 1 BTU/°R ≈ 1900 J/K. [5] The BTU was in fact defined so that the average heat capacity of one pound of water would be 1 BTU/°F. In this regard, with respect to mass, note conversion of 1 Btu/lb⋅°R ≈ 4,187 J/kg⋅K [ 6 ] and the calorie (below).