enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The MO diagram for diboron (B-B, electron configuration 1σ g 2 1σ u 2 2σ g 2 2σ u 2 1π u 2) requires the introduction of an atomic orbital overlap model for p orbitals. The three dumbbell-shaped p-orbitals have equal energy and are oriented mutually perpendicularly (or orthogonally).

  3. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.

  4. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    For example, the orbital 1s (pronounced as the individual numbers and letters: "'one' 'ess'") is the lowest energy level (n = 1) and has an angular quantum number of ℓ = 0, denoted as s. Orbitals with ℓ = 1, 2 and 3 are denoted as p, d and f respectively. The set of orbitals for a given n and ℓ is called a subshell, denoted

  5. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    In hydrogen fluoride HF overlap between the H 1s and F 2s orbitals is allowed by symmetry but the difference in energy between the two atomic orbitals prevents them from interacting to create a molecular orbital. Overlap between the H 1s and F 2p z orbitals is also symmetry allowed, and these two atomic orbitals have a small energy separation ...

  6. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Atomic orbitals must also overlap within space. They cannot combine to form molecular orbitals if they are too far away from one another. Atomic orbitals must be at similar energy levels to combine as molecular orbitals. Because if the energy difference is great, when the molecular orbitals form, the change in energy becomes small.

  7. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    When far apart (right side of graph) all the atoms have discrete valence orbitals p and s with the same energies. However, when the atoms come closer (left side) , their electron orbitals begin to spatially overlap and hybridize into N molecular orbitals each with a different energy, where N is the number of atoms in the crystal.

  8. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    For example, in the case of the F 2 molecule, the F−F bond is formed by the overlap of p z orbitals of the two F atoms, each containing an unpaired electron. Since the nature of the overlapping orbitals are different in H 2 and F 2 molecules, the bond strength and bond lengths differ between H 2 and F 2 molecules.

  9. Conrotatory and disrotatory - Wikipedia

    en.wikipedia.org/wiki/Conrotatory_and_disrotatory

    Since thermal electrocyclic reactions occur in the HOMO, it is first necessary to draw the appropriate molecular orbitals. Next, the new carbon-carbon bond is formed by taking two of the p-orbitals and rotating them 90 degrees (see diagram). Since the new bond requires constructive overlap, the orbitals must be rotated in a certain way.