enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Subgroups of cyclic groups - Wikipedia

    en.wikipedia.org/wiki/Subgroups_of_cyclic_groups

    In abstract algebra, every subgroup of a cyclic group is cyclic. Moreover, for a finite cyclic group of order n, every subgroup's order is a divisor of n, and there is exactly one subgroup for each divisor. [1] [2] This result has been called the fundamental theorem of cyclic groups. [3] [4]

  3. Glossary of group theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_group_theory

    real element An element g of a group G is called a real element of G if it belongs to the same conjugacy class as its inverse, that is, if there is a h in G with g h = g −1, where g h is defined as h −1 gh. An element of a group G is real if and only if for all representations of G the trace of the corresponding matrix is a real number.

  4. Cyclic group - Wikipedia

    en.wikipedia.org/wiki/Cyclic_group

    A cyclic group is a group which is equal to one of its cyclic subgroups: G = g for some element g, called a generator of G. For a finite cyclic group G of order n we have G = {e, g, g 2, ... , g n−1}, where e is the identity element and g i = g j whenever i ≡ j (mod n); in particular g n = g 0 = e, and g −1 = g n−1.

  5. Subgroup - Wikipedia

    en.wikipedia.org/wiki/Subgroup

    Every element a of a group G generates a cyclic subgroup a . If a is isomorphic to ⁠ Z / n Z {\displaystyle \mathbb {Z} /n\mathbb {Z} } ⁠ ( the integers mod n ) for some positive integer n , then n is the smallest positive integer for which a n = e , and n is called the order of a .

  6. Lattice of subgroups - Wikipedia

    en.wikipedia.org/wiki/Lattice_of_subgroups

    The dihedral group Dih 4 has ten subgroups, counting itself and the trivial subgroup. Five of the eight group elements generate subgroups of order two, and the other two non-identity elements both generate the same cyclic subgroup of order four.

  7. Characteristic subgroup - Wikipedia

    en.wikipedia.org/wiki/Characteristic_subgroup

    In the quaternion group of order 8, each of the cyclic subgroups of order 4 is normal, but none of these are characteristic. However, the subgroup, {1, −1}, is characteristic, since it is the only subgroup of order 2. If n > 2 is even, the dihedral group of order 2n has 3 subgroups of index 2, all of which are normal. One of these is the ...

  8. Monogenic semigroup - Wikipedia

    en.wikipedia.org/wiki/Monogenic_semigroup

    A related notion is that of periodic semigroup (also called torsion semigroup), in which every element has finite order (or, equivalently, in which every monogenic subsemigroup is finite). A more general class is that of quasi-periodic semigroups (aka group-bound semigroups or epigroups ) in which every element of the semigroup has a power that ...

  9. Klein four-group - Wikipedia

    en.wikipedia.org/wiki/Klein_four-group

    V is the symmetry group of this cross: flipping it horizontally (a) or vertically (b) or both (ab) leaves it unchanged.A quarter-turn changes it. In two dimensions, the Klein four-group is the symmetry group of a rhombus and of rectangles that are not squares, the four elements being the identity, the vertical reflection, the horizontal reflection, and a 180° rotation.