enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    This class includes Hermite–Obreschkoff methods and Fehlberg methods, as well as methods like the Parker–Sochacki method [17] or Bychkov–Scherbakov method, which compute the coefficients of the Taylor series of the solution y recursively. methods for second order ODEs. We said that all higher-order ODEs can be transformed to first-order ...

  3. Bulirsch–Stoer algorithm - Wikipedia

    en.wikipedia.org/wiki/Bulirsch–Stoer_algorithm

    In numerical analysis, the Bulirsch–Stoer algorithm is a method for the numerical solution of ordinary differential equations which combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-type applications, and the modified midpoint method, [1] to obtain numerical solutions to ordinary ...

  4. Order of approximation - Wikipedia

    en.wikipedia.org/wiki/Order_of_approximation

    Second-order approximation is the term scientists use for a decent-quality answer. Few simplifying assumptions are made, and when a number is needed, an answer with two or more significant figures ("the town has 3.9 × 10 3, or thirty-nine hundred, residents") is generally given. As in the examples above, the term "2nd order" refers to the ...

  5. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    The work of Butcher also proves that 7th and 8th order methods have a minimum of 9 and 11 stages, respectively. [11] [12] An example of an explicit method of order 6 with 7 stages can be found in Ref. [14] Explicit methods of order 7 with 9 stages [11] and explicit methods of order 8 with 11 stages [15] are also known. See Refs.

  6. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The name is in analogy with quadrature, meaning numerical integration, where weighted sums are used in methods such as Simpson's method or the Trapezoidal rule. There are various methods for determining the weight coefficients, for example, the Savitzky–Golay filter. Differential quadrature is used to solve partial differential equations ...

  7. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  8. Method of matched asymptotic expansions - Wikipedia

    en.wikipedia.org/wiki/Method_of_matched...

    A method of matched asymptotic expansions - with matching of solutions in the common domain of validity - has been developed and used extensively by Dingle and Müller-Kirsten for the derivation of asymptotic expansions of the solutions and characteristic numbers (band boundaries) of Schrödinger-like second-order differential equations with ...

  9. Trapezoidal rule (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule...

    In numerical analysis and scientific computing, the trapezoidal rule is a numerical method to solve ordinary differential equations derived from the trapezoidal rule for computing integrals. The trapezoidal rule is an implicit second-order method, which can be considered as both a Runge–Kutta method and a linear multistep method.