enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Material derivative - Wikipedia

    en.wikipedia.org/wiki/Material_derivative

    For example, in fluid dynamics, the velocity field is the flow velocity, and the quantity of interest might be the temperature of the fluid. In this case, the material derivative then describes the temperature change of a certain fluid parcel with time, as it flows along its pathline (trajectory).

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    This "special" derivative is in fact the ordinary derivative of a function of many variables along a path following the fluid motion; it may be derived through application of the chain rule in which all independent variables are checked for change along the path (which is to say, the total derivative). For example, the measurement of changes in ...

  4. Fluid kinematics - Wikipedia

    en.wikipedia.org/wiki/Fluid_kinematics

    The portion of the material derivative represented by the spatial derivatives is called the convective derivative. It accounts for the variation in fluid property, be it velocity or temperature for example, due to the motion of a fluid particle in space where its values are different.

  5. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    The Lagrangian and Eulerian specifications of the kinematics and dynamics of the flow field are related by the material derivative (also called the Lagrangian derivative, convective derivative, substantial derivative, or particle derivative). [1] Suppose we have a flow field u, and we are also given a generic field with Eulerian specification F ...

  6. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.

  7. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes.

  8. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    For constant fluid density, the incompressible equations can be written as a quasilinear advection equation for the fluid velocity together with an elliptic Poisson's equation for the pressure. On the other hand, the compressible Euler equations form a quasilinear hyperbolic system of conservation equations .

  9. List of nonlinear partial differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_nonlinear_partial...

    Name Dim Equation Applications Bateman-Burgers equation: 1+1 + = Fluid mechanics Benjamin–Bona–Mahony: 1+1 + + = Fluid mechanics Benjamin–Ono: 1+1 + + = internal waves in deep water