enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (electric field) - Wikipedia

    en.wikipedia.org/wiki/Work_(electric_field)

    The work can be done, for example, by electrochemical devices (electrochemical cells) or different metals junctions [clarification needed] generating an electromotive force. Electric field work is formally equivalent to work by other force fields in physics, [1] and the formalism for electrical work is identical to that of mechanical work.

  3. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    Energy shares the same unit of measurement with work (Joules) because the energy from the object doing work is transferred to the other objects it interacts with when work is being done. [17] The workenergy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body ...

  4. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    The amount of electricity required to run a 1 W device for 1 s. The energy required to accelerate a 1 kg mass at 1 m/s 2 through a distance of 1 m. The kinetic energy of a 2 kg mass travelling at 1 m/s, or a 1 kg mass travelling at 1.41 m/s. The energy required to lift an apple up 1 m, assuming the apple has a mass of 101.97 g.

  5. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...

  6. Electricity - Wikipedia

    en.wikipedia.org/wiki/Electricity

    Electric power is the rate at which electric energy is transferred by an electric circuit. The SI unit of power is the watt , one joule per second . Electric power, like mechanical power , is the rate of doing work , measured in watts , and represented by the letter P .

  7. Erg - Wikipedia

    en.wikipedia.org/wiki/Erg

    The erg is a unit of energy equal to 10 −7 joules (100 nJ). It is not an SI unit, instead originating from the centimetre–gram–second system of units (CGS). Its name is derived from ergon (ἔργον), a Greek word meaning 'work' or 'task'. [1] An erg is the amount of work done by a force of one dyne exerted for a distance of one centimetre.

  8. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    Notably, the electric potential due to an idealized point charge (proportional to 1 ⁄ r, with r the distance from the point charge) is continuous in all space except at the location of the point charge. Though electric field is not continuous across an idealized surface charge, it is not infinite at any point. Therefore, the electric ...

  9. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    Electric fields are important in many areas of physics, and are exploited in electrical technology. For example, in atomic physics and chemistry , the interaction in the electric field between the atomic nucleus and electrons is the force that holds these particles together in atoms.