enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees.

  3. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    Download as PDF; Printable version; ... when random forest is used to fit models, jackknife estimated variance is defined as: ... The results shows in paper ...

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In the more general multiple regression model, there are independent variables: = + + + +, where is the -th observation on the -th independent variable.If the first independent variable takes the value 1 for all , =, then is called the regression intercept.

  5. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    The random subspace method has been used for decision trees; when combined with "ordinary" bagging of decision trees, the resulting models are called random forests. [5] It has also been applied to linear classifiers, [6] support vector machines, [7] nearest neighbours [8] [9] and other types of classifiers.

  6. International Conference on Learning Representations

    en.wikipedia.org/wiki/International_Conference...

    Since its inception in 2013, ICLR has employed an open peer review process to referee paper submissions (based on models proposed by Yann LeCun [2]). In 2019, there were 1591 paper submissions, of which 500 accepted with poster presentations (31%) and 24 with oral presentations (1.5%). [ 3 ]

  7. Tin Kam Ho - Wikipedia

    en.wikipedia.org/wiki/Tin_Kam_Ho

    Tin Kam Ho (Chinese: 何天琴) is a computer scientist at IBM Research with contributions to machine learning, data mining, and classification.Ho is noted for introducing random decision forests in 1995, and for her pioneering work in ensemble learning and data complexity analysis.

  8. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Website with academic papers about security topics. This data is not pre-processed Papers per category, papers archive by date. [379] Trendmicro Website with research, news, and perspectives bout security topics. This data is not pre-processed Reviewed list of Trendmicro research, news, and perspectives. [380] The Hacker News

  9. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    The random forest classifier operates with a high accuracy and speed. [11] Random forests are much faster than decision trees because of using a smaller dataset. To recreate specific results, it is necessary to keep track of the exact random seed used to generate the bootstrap sets.