enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees.

  3. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Rotation forest – in which every decision tree is trained by first applying principal component analysis (PCA) on a random subset of the input features. [ 13 ] A special case of a decision tree is a decision list , [ 14 ] which is a one-sided decision tree, so that every internal node has exactly 1 leaf node and exactly 1 internal node as a ...

  4. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    When this process is repeated, such as when building a random forest, many bootstrap samples and OOB sets are created. The OOB sets can be aggregated into one dataset, but each sample is only considered out-of-bag for the trees that do not include it in their bootstrap sample.

  5. Chi-square automatic interaction detection - Wikipedia

    en.wikipedia.org/wiki/Chi-square_automatic...

    Luchman, J.N.; CHAIDFOREST: Stata module to conduct random forest ensemble classification based on chi-square automated interaction detection (CHAID) as base learner, Available for free download, or type within Stata: ssc install chaidforest. IBM SPSS Decision Trees grows exhaustive CHAID trees as well as a few other types of trees such as CART.

  6. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    The random forest classifier operates with a high accuracy and speed. [11] Random forests are much faster than decision trees because of using a smaller dataset. To recreate specific results, it is necessary to keep track of the exact random seed used to generate the bootstrap sets.

  7. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Provides classification and regression datasets in a standardized format that are accessible through a Python API. Metatext NLP: https://metatext.io/datasets web repository maintained by community, containing nearly 1000 benchmark datasets, and counting. Provides many tasks from classification to QA, and various languages from English ...

  8. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    The random subspace method has been used for decision trees; when combined with "ordinary" bagging of decision trees, the resulting models are called random forests. [5] It has also been applied to linear classifiers, [6] support vector machines, [7] nearest neighbours [8] [9] and other types of classifiers.

  9. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    An example of Gaussian Process Regression (prediction) compared with other regression models [94] A Gaussian process is a stochastic process in which every finite collection of the random variables in the process has a multivariate normal distribution , and it relies on a pre-defined covariance function , or kernel, that models how pairs of ...