enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. [1]

  3. Prior probability - Wikipedia

    en.wikipedia.org/wiki/Prior_probability

    An informative prior expresses specific, definite information about a variable. An example is a prior distribution for the temperature at noon tomorrow. A reasonable approach is to make the prior a normal distribution with expected value equal to today's noontime temperature, with variance equal to the day-to-day variance of atmospheric temperature, or a distribution of the temperature for ...

  4. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    The posterior probability of a model depends on the evidence, or marginal likelihood, which reflects the probability that the data is generated by the model, and on the prior belief of the model. When two competing models are a priori considered to be equiprobable, the ratio of their posterior probabilities corresponds to the Bayes factor .

  5. Approximate Bayesian computation - Wikipedia

    en.wikipedia.org/wiki/Approximate_Bayesian...

    where (|) denotes the posterior, (|) the likelihood, () the prior, and () the evidence (also referred to as the marginal likelihood or the prior predictive probability of the data). Note that the denominator p ( D ) {\displaystyle p(D)} is normalizing the total probability of the posterior density p ( θ | D ) {\displaystyle p(\theta |D)} to ...

  6. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    These posterior probabilities are proportional to the product of the prior and the marginal likelihood, where the marginal likelihood is the integral of the sampling density over the prior distribution of the parameters. In complex models, marginal likelihoods are generally computed numerically. [11]

  7. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  8. Laplace's approximation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_approximation

    for the approximate posterior over and the approximate log marginal likelihood respectively. The main weaknesses of Laplace's approximation are that it is symmetric around the mode and that it is very local: the entire approximation is derived from properties at a single point of the target density.

  9. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian-specific workflow stratifies this approach to include three sub-steps: (b)–(i) formalizing prior distributions based on background knowledge and prior elicitation; (b)–(ii) determining the likelihood function based on a nonlinear function ; and (b)–(iii) making a posterior inference. The resulting posterior inference can be used ...