Search results
Results from the WOW.Com Content Network
Several progressively more accurate approximations of the step function. An asymmetrical Gaussian function fit to a noisy curve using regression.. In general, a function approximation problem asks us to select a function among a well-defined class [citation needed] [clarification needed] that closely matches ("approximates") a target function [citation needed] in a task-specific way.
The objective is to make the approximation as close as possible to the actual function, typically with an accuracy close to that of the underlying computer's floating point arithmetic. This is accomplished by using a polynomial of high degree, and/or narrowing the domain over which the polynomial has to approximate the function. Narrowing the ...
Related to approximation of functions is the asymptotic value of a function, i.e. the value as one or more of a function's parameters becomes arbitrarily large. For example, the sum k / 2 + k / 4 + k / 8 + ⋯ + k / 2 n {\displaystyle k/2+k/4+k/8+\cdots +k/2^{n}} is asymptotically equal to k .
However, a more restricted meaning is often used, where a functional equation is an equation that relates several values of the same function. For example, the logarithm functions are essentially characterized by the logarithmic functional equation log ( x y ) = log ( x ) + log ( y ) . {\displaystyle \log(xy)=\log(x)+\log(y).}
In mathematics, a linear approximation is an approximation of a general function using a linear function (more precisely, an affine function). They are widely used in the method of finite differences to produce first order methods for solving or approximating solutions to equations.
In mathematics, least squares function approximation applies the principle of least squares to function approximation, by means of a weighted sum of other functions.The best approximation can be defined as that which minimizes the difference between the original function and the approximation; for a least-squares approach the quality of the approximation is measured in terms of the squared ...
Analytic continuation of natural logarithm (imaginary part) Analytic continuation is a technique to extend the domain of a given analytic function.Analytic continuation often succeeds in defining further values of a function, for example in a new region where an infinite series representation in terms of which it is initially defined becomes divergent.
In cases where (), are expressed by polynomials or series of negative powers, exponential function, logarithmic function or , we can apply 2-point Padé approximant to (). There is a method of using this to give an approximate solution of a differential equation with high accuracy. [ 9 ]