Ad
related to: source sink model
Search results
Results from the WOW.Com Content Network
Source–sink dynamics is a theoretical model used by ecologists to describe how variation in habitat quality may affect the population growth or decline of organisms.. Since quality is likely to vary among patches of habitat, it is important to consider how a low quality patch might affect a population.
From left to right: a field with a source, a field with a sink, a field without either. In the physical sciences, engineering and mathematics, sources and sinks is an analogy used to describe properties of vector fields. It generalizes the idea of fluid sources and sinks (like the faucet and drain of a bathtub) across different scientific ...
A sugar source is any part of the plant that is producing or releasing sugar. During the plant's growth period, usually during the spring, storage organs such as the roots are sugar sources, and the plant's many growing areas are sugar sinks. After the growth period, when the meristems are dormant, the leaves are sources, and storage organs are ...
A flow must satisfy the restriction that the amount of flow into a node equals the amount of flow out of it, unless it is a source, which has only outgoing flow, or sink, which has only incoming flow. A network can be used to model traffic in a computer network, circulation with demands, fluids in pipes, currents in an electrical circuit, or ...
The relationship between the sum of the current sources and sinks and the voltage measured by the microelectrode probe may be calculated analytically if it is assumed that the quasi-static assumption holds, that the medium is spherically symmetric, homogeneous, isotropic, and infinite, and if the current source or sink is modeled as a point ...
A current source is the dual of a voltage source. The term current sink is sometimes used for sources fed from a negative voltage supply. Figure 1 shows the schematic symbol for an ideal current source driving a resistive load. There are two types. An independent current source (or sink) delivers a constant current.
The development of metapopulation theory, in conjunction with the development of source–sink dynamics, emphasised the importance of connectivity between seemingly isolated populations. Although no single population may be able to guarantee the long-term survival of a given species, the combined effect of many populations may be able to do this.
We can transform the multi-source multi-sink problem into a maximum flow problem by adding a consolidated source connecting to each vertex in and a consolidated sink connected by each vertex in (also known as supersource and supersink) with infinite capacity on each edge (See Fig. 4.1.1.).
Ad
related to: source sink model