Search results
Results from the WOW.Com Content Network
Here, R A is the isotope amount ratio of the natural analyte, R A = n(i A) A /n(j A) A, R B is the isotope amount ratio of the isotopically enriched analyte, R B = n(i A) B /n(j A) B, R AB is the isotope amount ratio of the resulting mixture, x(j A) A is the isotopic abundance of the minor isotope in the natural analyte, and x(j A) B is the ...
Archaeological materials, such as bone, organic residues, hair, or sea shells, can serve as substrates for isotopic analysis. Carbon, nitrogen and zinc isotope ratios are used to investigate the diets of past people; these isotopic systems can be used with others, such as strontium or oxygen, to answer questions about population movements and cultural interactions, such as trade.
Sulfur has four stable isotopes, 32 S, 33 S, 34 S, and 36 S, of which 32 S is the most abundant by a large margin due to the fact it is created by the very common 12 C in supernovas. Sulfur isotope ratios are almost always expressed as ratios relative to 32 S due to this major relative abundance (95.0%). Sulfur isotope fractionations are ...
For two isotopes with atomic mass approximately ′ and ″, the difference in the energies of the same transition is ~ = ~ (+ ″ + ′) ~ [″ (′)] ″ ′ ′ ″ ~. The above equations imply that such mass shift is greatest for hydrogen and deuterium, since their mass ratio is the largest, A ″ = 2 A ′ {\displaystyle A''=2A'} .
Stable isotopes partitioning between two substances A and B can be expressed by the use of the isotopic fractionation factor (alpha): α A-B = R A /R B. where R is the ratio of the heavy to light isotope (e.g., 2 H/ 1 H or 18 O/ 16 O). Values for alpha tend to be very close to 1. [1] [2]
The δ values and absolute isotope ratios of common reference materials are summarized in Table 1 and described in more detail below. Alternative values for the absolute isotopic ratios of reference materials, differing only modestly from those in Table 1, are presented in Table 2.5 of Sharp (2007) [1] (a text freely available online), as well as Table 1 of the 1993 IAEA report on isotopic ...
Equilibrium isotope fractionation is the partial separation of isotopes between two or more substances in chemical equilibrium. Equilibrium fractionation is strongest at low temperatures, and (along with kinetic isotope effects) forms the basis of the most widely used isotopic paleothermometers (or climate proxies): D/H and 18 O/ 16 O records from ice cores, and 18 O/ 16 O records from calcium ...
The most notable examples of mass-independent fractionation in nature are found in the isotopes of oxygen and sulfur.The first example was discovered by Robert N. Clayton, Toshiko Mayeda, and Lawrence Grossman in 1973, [2] in the oxygen isotopic composition of refractory calcium–aluminium-rich inclusions in the Allende meteorite.