Search results
Results from the WOW.Com Content Network
A bivariate, multimodal distribution Figure 4. A non-example: a unimodal distribution, that would become multimodal if conditioned on either x or y. In statistics, a multimodal distribution is a probability distribution with more than one mode (i.e., more than one local peak of the distribution).
The Beta distribution on [0,1], a family of two-parameter distributions with one mode, of which the uniform distribution is a special case, and which is useful in estimating success probabilities. The four-parameter Beta distribution, a straight-forward generalization of the Beta distribution to arbitrary bounded intervals [,].
The following is an example of applying a continuity correction. Suppose one wishes to calculate Pr(X ≤ 8) for a binomial random variable X. If Y has a distribution given by the normal approximation, then Pr(X ≤ 8) is approximated by Pr(Y ≤ 8.5). The addition of 0.5 is the continuity correction; the uncorrected normal approximation gives ...
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
The shape of a distribution will fall somewhere in a continuum where a flat distribution might be considered central and where types of departure from this include: mounded (or unimodal), U-shaped, J-shaped, reverse-J shaped and multi-modal. [1] A bimodal distribution would have two high points rather than one. The shape of a distribution is ...
In the design of experiments, a between-group design is an experiment that has two or more groups of subjects each being tested by a different testing factor simultaneously. This design is usually used in place of, or in some cases in conjunction with, the within-subject design , which applies the same variations of conditions to each subject ...
The 21st century has witnessed a resurgence of research on gender differences in variability, with most of the emphasis on humans. The results vary based on the type of problem, but some recent studies have found that the variability hypothesis is true for parts of IQ tests, with more men falling at the extremes of the distribution.
In this context, the log-normal distribution has shown a good performance in two main use cases: (1) predicting the proportion of time traffic will exceed a given level (for service level agreement or link capacity estimation) i.e. link dimensioning based on bandwidth provisioning and (2) predicting 95th percentile pricing.