Search results
Results from the WOW.Com Content Network
The task of additional reactive power compensation (also known as voltage compensation) is assigned to compensating devices: [7] passive (either permanently connected or switched) sinks of reactive power (e.g., shunt reactors that are similar to transformers in construction, with a single winding and iron core [ 9 ] ).
In Electrical Engineering , a static synchronous compensator (STATCOM) is a shunt-connected, reactive compensation device used on transmission networks. It uses power electronics to form a voltage-source converter that can act as either a source or sink of reactive AC power to an electricity network.
A unified power flow controller (UPFC) is an electrical device for providing fast-acting reactive power compensation on high-voltage electricity transmission networks. It uses a pair of three-phase controllable bridges to produce current that is injected into a transmission line using a series transformer. [ 1 ]
The reactive power produced by a capacitor bank is in direct proportion to the square of its terminal voltage, and if the system voltage decreases, the capacitors produce less reactive power, when it is most needed, [2] while if the system voltage increases the capacitors produce more reactive power, which exacerbates the problem. In contrast ...
Heavily loaded lines consumed reactive power due to the line's inductance, and as transmission voltage increased throughout the 20th century, the higher voltage supplied capacitive reactive power. As operating a transmission line only at it surge impedance loading (SIL) was not feasible, [2] other means to manage the reactive power was needed.
In Electrical Engineering, a static VAR compensator (SVC) is a set of electrical devices for providing fast-acting reactive power on high-voltage electricity transmission networks. [1] [2] SVCs are part of the flexible AC transmission system [3] [4] device family, regulating voltage, power factor, harmonics and stabilizing the system. A static ...
Unlike the TCR, the TSC is only ever operated fully on or fully off. An attempt to operate a TSC in ‘’phase control’’ would result in the generation of very large amplitude resonant currents, leading to overheating of the capacitor bank and thyristor valve, and harmonic distortion in the AC system to which the SVC is connected.
The real power and voltage are specified for buses that are generators. These buses have a constant power generation, controlled through a prime mover, and a constant bus voltage. Slack bus – to balance the active and reactive power in the system. It is also known as the Reference Bus or the Swing Bus. The slack bus will serve as an angular ...