Search results
Results from the WOW.Com Content Network
The task of additional reactive power compensation (also known as voltage compensation) is assigned to compensating devices: [7] passive (either permanently connected or switched) sinks of reactive power (e.g., shunt reactors that are similar to transformers in construction, with a single winding and iron core [ 9 ] ).
In Electrical Engineering, a static VAR compensator (SVC) is a set of electrical devices for providing fast-acting reactive power on high-voltage electricity transmission networks. [1] [2] SVCs are part of the flexible AC transmission system [3] [4] device family, regulating voltage, power factor, harmonics and stabilizing the system. A static ...
This feature can provide controllable voltage compensation. [2] In addition, SSSC is able to reverse the power flow by injecting a sufficiently large series reactive compensating voltage. [2] The SSSC consists of a voltage source converter (VSC) connected in series with the transmission line through a transformer.
In Electrical Engineering , a static synchronous compensator (STATCOM) is a shunt-connected, reactive compensation device used on transmission networks. It uses power electronics to form a voltage-source converter that can act as either a source or sink of reactive AC power to an electricity network.
These services include reactive power compensation, voltage regulation, flicker control, active power filtering and harmonic cancellation. [6] Wind turbines with variable-speed generators have the potential to add synthetic inertia to the grid and assist in frequency control.
A unified power flow controller (UPFC) is an electrical device for providing fast-acting reactive power compensation on high-voltage electricity transmission networks. It uses a pair of three-phase controllable bridges to produce current that is injected into a transmission line using a series transformer. [ 1 ]
The report concluded that excess power from on-site generation is worth 18.3 cents per kilowatt hour, about five times more than Idaho Power’s valuation in its study, which was 2.8 cents to 4 ...
The reactive power produced by a capacitor bank is in direct proportion to the square of its terminal voltage, and if the system voltage decreases, the capacitors produce less reactive power, when it is most needed, [2] while if the system voltage increases the capacitors produce more reactive power, which exacerbates the problem. In contrast ...