Search results
Results from the WOW.Com Content Network
It is defined as the ratio of the convection current to the dispersion current. The Bodenstein number is an element of the dispersion model of residence times and is therefore also called the dimensionless dispersion coefficient. [1] Mathematically, two idealized extreme cases exist for the Bodenstein number.
Lipophilic compounds are then insoluble in water, where they persist as a separated phase from the aqueous one. This renders their mobility in groundwater basically decoupled with dissolution / precipitation mechanisms and attributed to the mean flow transport (advection and dispersion) and soil-mediated mechanisms of reaction (adsorption). [7]
The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.
David R. Lide (ed), CRC Handbook of Chemistry and Physics, 85th Edition, online version. CRC Press. Boca Raton, Florida, 2003; Section 6, Fluid Properties; Critical Constants. Also agrees with Celsius values from Section 4: Properties of the Elements and Inorganic Compounds, Melting, Boiling, Triple, and Critical Point Temperatures of the Elements
The Morison equation contains two empirical hydrodynamic coefficients—an inertia coefficient and a drag coefficient—which are determined from experimental data. As shown by dimensional analysis and in experiments by Sarpkaya, these coefficients depend in general on the Keulegan–Carpenter number, Reynolds number and surface roughness. [4] [5]
Thus axial dispersion coefficient D L can be estimated (L = packed height) [5] As mentioned before, there are also other boundary conditions that can be applied to the dispersion model giving different relationships for the dispersion number. [8] [9] [3] Advantages. From the safety technical point of view the PFR has the advantages that [10]
The table values for −100 °C to 100 °C were computed by the following formulas, where T is in kelvins and vapor pressures, P w and P i, are in pascals. Over liquid water log e ( P w ) = −6094.4642 T −1 + 21.1249952 − 2.724552×10 −2 T + 1.6853396×10 −5 T 2 + 2.4575506 log e ( T )
The distribution coefficient, log D, is the ratio of the sum of the concentrations of all forms of the compound (ionized plus un-ionized) in each of the two phases, one essentially always aqueous; as such, it depends on the pH of the aqueous phase, and log D = log P for non-ionizable compounds at any pH.