enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  3. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Mamba [a] is a deep learning architecture focused on sequence modeling. It was developed by researchers from Carnegie Mellon University and Princeton University to address some limitations of transformer models, especially in processing long sequences. It is based on the Structured State Space sequence (S4) model. [2] [3] [4]

  4. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Major advances in this field can result from advances in learning algorithms (such as deep learning), computer hardware, and, less-intuitively, the availability of high-quality training datasets. [1] High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to ...

  5. Topological deep learning - Wikipedia

    en.wikipedia.org/wiki/Topological_Deep_Learning

    One of the core concepts in topological deep learning is the domain upon which this data is defined and supported. In case of Euclidean data, such as images, this domain is a grid, upon which the pixel value of the image is supported. In a more general setting this domain might be a topological domain. Next, we introduce the most common ...

  6. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  7. Data modeling - Wikipedia

    en.wikipedia.org/wiki/Data_modeling

    Data models represent information areas of interest. While there are many ways to create data models, according to Len Silverston (1997) [7] only two modeling methodologies stand out, top-down and bottom-up: Bottom-up models or View Integration models are often the result of a reengineering effort. They usually start with existing data ...

  8. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    With the rise of deep learning, a new family of methods, called deep generative models (DGMs), [8] [9] is formed through the combination of generative models and deep neural networks. An increase in the scale of the neural networks is typically accompanied by an increase in the scale of the training data, both of which are required for good ...

  9. Fine-tuning (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Fine-tuning_(deep_learning)

    In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]