Search results
Results from the WOW.Com Content Network
The Möbius function () is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. [ i ] [ ii ] [ 2 ] It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula .
For example, if one starts with Euler's totient function φ, and repeatedly applies the transformation process, one obtains: φ the totient function; φ ∗ 1 = I, where I(n) = n is the identity function; I ∗ 1 = σ 1 = σ, the divisor function; If the starting function is the Möbius function itself, the list of functions is: μ, the Möbius ...
So, for example, the () = words using 0s and 1s are ,,,,,. To obtain the Gaussian binomial coefficient ( m r ) q {\displaystyle {\tbinom {m}{r}}_{q}} , each word is associated with a factor q d , where d is the number of inversions of the word, where, in this case, an inversion is a pair of positions where the left of the pair holds the letter ...
(where ⌊ ⌋ denotes the floor function). In this example the fact that the Legendre identity is derived from the Sieve of Eratosthenes is clear: the first term is the number of integers below X, the second term removes the multiples of all primes, the third term adds back the multiples of two primes (which were miscounted by being "crossed ...
A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.
An example of such linear fractional transformation is the Cayley transform, which was originally defined on the 3 × 3 real matrix ring. Linear fractional transformations are widely used in various areas of mathematics and its applications to engineering, such as classical geometry , number theory (they are used, for example, in Wiles's proof ...
Mertens function to n = 10 000 Mertens function to n = 10 000 000. In number theory, the Mertens function is defined for all positive integers n as = = (), where () is the Möbius function. The function is named in honour of Franz Mertens.
The Smith chart, used by electrical engineers for analyzing transmission lines, is a visual depiction of the elliptic Möbius transformation Γ = (z − 1)/(z + 1). Each point on the Smith chart simultaneously represents both a value of z (bottom left), and the corresponding value of Γ (bottom right), for |Γ|<1.