Search results
Results from the WOW.Com Content Network
In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n.
No free lunch theorem (philosophy of mathematics) No-hair theorem ; No-trade theorem ; No wandering domain theorem (ergodic theory) Noether's theorem (Lie groups, calculus of variations, differential invariants, physics) Noether's second theorem (calculus of variations, physics)
Clement's congruence-based theorem characterizes the twin primes pairs of the form (, +) through the following conditions: [()! +] ((+)), +P. A. Clement's original 1949 paper [2] provides a proof of this interesting elementary number theoretic criteria for twin primality based on Wilson's theorem.
Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]
Linear congruence theorem; Method of successive substitution; Chinese remainder theorem; Fermat's little theorem. Proofs of Fermat's little theorem; Fermat quotient; Euler's totient function. Noncototient; Nontotient; Euler's theorem; Wilson's theorem; Primitive root modulo n. Multiplicative order; Discrete logarithm; Quadratic residue. Euler's ...
In number theory, a Wilson prime is a prime number such that divides ()! +, where "!" denotes the factorial function; compare this with Wilson's theorem, which states that every prime divides ()! +. Both are named for 18th-century English mathematician John Wilson ; in 1770, Edward Waring credited the theorem to Wilson, [ 1 ] although it had ...
Fermat's last theorem Fermat's last theorem, one of the most famous and difficult to prove theorems in number theory, states that for any integer n > 2, the equation a n + b n = c n has no positive integer solutions. Fermat's little theorem Fermat's little theorem field extension A field extension L/K is a pair of fields K and L such that K is ...
Five color theorem; Five lemma; Fundamental theorem of arithmetic; Gauss–Markov theorem (brief pointer to proof) Gödel's incompleteness theorem. Gödel's first incompleteness theorem; Gödel's second incompleteness theorem; Goodstein's theorem; Green's theorem (to do) Green's theorem when D is a simple region; Heine–Borel theorem ...