Search results
Results from the WOW.Com Content Network
An early exception was the Bonnington Chemical Works where, in 1830, the HCl began to be captured and the hydrochloric acid produced was used in making sal ammoniac (ammonium chloride). [24] After the passage of the act, soda ash producers were obliged to absorb the waste gas in water, producing hydrochloric acid on an industrial scale.
The third stable eutectic has 18.4% (mass) of NaOH. It solidifies at about −28.7 °C as a mixture of water ice and the heptahydrate NaOH·7H 2 O. [18] [22] When solutions with less than 18.4% NaOH are cooled, water ice crystallizes first, leaving the NaOH in solution. [18] The α form of the tetrahydrate has density 1.33 g/cm 3.
At 15.6 °C (60.1 °F), the density of a saturated solution is 0.88 g/ml; it contains 35.6% ammonia by mass, 308 grams of ammonia per litre of solution, and has a molarity of approximately 18 mol/L. At higher temperatures, the molarity of the saturated solution decreases and the density increases. [8]
Upon mixing of concentrated hydrochloric acid and concentrated nitric acid, chemical reactions occur. These reactions result in the volatile products nitrosyl chloride and chlorine gas: HNO 3 + 3 HCl → NOCl + Cl 2 + 2 H 2 O. as evidenced by the fuming nature and characteristic yellow color of aqua regia.
Potassium permanganate can be used to generate chlorine gas when concentrated hydrochloric acid is added to it: 2KMn04 + 16HCl —> 2KCl + 2MnCl2 + 8H2O + 5Cl2 This process has been investigated by Venable & Jackson and fails if the concentation of the hydrochloric acid solution drops below 2mM Venable, F. P.; Jackson, D.H. (1920).
An example of a negative azeotrope is hydrochloric acid at a concentration of 20.2% and 79.8% water (by mass). Hydrogen chloride boils at −85 °C and water at 100 °C, but the azeotrope boils at 110 °C, which is higher than either of its constituents. The maximum boiling point of any hydrochloric acid solution is 110 °C. Other examples:
Fe 2 O 3 + 6 HCl + 9 H 2 O → 2 FeCl 3 (H 2 O) 6. In complementary route, iron metal can be oxidized by hydrochloric acid followed by chlorination: [10] Fe + 2 HCl → FeCl 2 + H 2 FeCl 2 + 0.5 Cl 2 + 6 H 2 O → FeCl 3 (H 2 O) 6. A number of variables apply to these processes, including the oxidation of iron by ferric chloride and the ...
2 NH 2 Cl → N 2 H 3 Cl + HCl. The chlorohydrazine (N 2 H 3 Cl) formed during self-decomposition is unstable and decomposes itself, which leads to the net decomposition reaction: 3 NH 2 Cl → N 2 + NH 4 Cl + 2 HCl. Monochloramine oxidizes sulfhydryls and disulfides in the same manner as hypochlorous acid, [25] but only possesses 0.4% of the ...