enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Nicolas Chuquet used a form of exponential notation in the 15th century, for example 12 2 to represent 12x 2. [11] This was later used by Henricus Grammateus and Michael Stifel in the 16th century. In the late 16th century, Jost Bürgi would use Roman numerals for exponents in a way similar to that of Chuquet, for example iii 4 for 4 x 3 .

  3. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    The only known powers of 2 with all digits even are 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 6 = 64 and 2 11 = 2048. [12] The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits.

  4. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Characterization 2 ⇒ characterization 5 [ edit ] In the sense of definition 2, the equation exp ⁡ ( x + y ) = exp ⁡ ( x ) exp ⁡ ( y ) {\displaystyle \exp(x+y)=\exp(x)\exp(y)} follows from the term-by-term manipulation of power series justified by uniform convergence , and the resulting equality of coefficients is just the Binomial theorem .

  5. List of integrals of exponential functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The last expression is the logarithmic mean. = (⁡ >) = (>) (the Gaussian integral) = (>) = (, >) (+) = (>)(+ +) = (>)= (>) (see Integral of a Gaussian function

  6. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    The sequence starts with a unary operation (the successor function with n = 0), and continues with the binary operations of addition (n = 1), multiplication (n = 2), exponentiation (n = 3), tetration (n = 4), pentation (n = 5), etc. Various notations have been used to represent hyperoperations.

  7. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    In 2017, it was proven [15] that there exists a unique function F which is a solution of the equation F(z + 1) = exp(F(z)) and satisfies the additional conditions that F(0) = 1 and F(z) approaches the fixed points of the logarithm (roughly 0.318 ± 1.337i) as z approaches ±i∞ and that F is holomorphic in the whole complex z-plane, except the ...

  8. Extended real number line - Wikipedia

    en.wikipedia.org/wiki/Extended_real_number_line

    Geometrically, when moving increasingly farther to the right along the -axis, the value of / approaches 0. This limiting behavior is similar to the limit of a function lim x → x 0 f ( x ) {\textstyle \lim _{x\to x_{0}}f(x)} in which the real number x {\displaystyle x} approaches x 0 , {\displaystyle x_{0},} except that there is no real number ...

  9. Indeterminate form - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_form

    A limit taking one of these indeterminate forms might tend to zero, might tend to any finite value, might tend to infinity, or might diverge, depending on the specific functions involved. A limit which unambiguously tends to infinity, for instance lim x → 0 1 / x 2 = ∞ , {\textstyle \lim _{x\to 0}1/x^{2}=\infty ,} is not considered ...