Search results
Results from the WOW.Com Content Network
The two base-pair complementary chains of the DNA molecule allow replication of the genetic instructions. The "specific pairing" is a key feature of the Watson and Crick model of DNA, the pairing of nucleotide subunits. [5] In DNA, the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine. The A:T and C:G pairs ...
The actual job of the phosphodiester bonds is where in DNA polymers connect the 5' carbon atom of one nucleotide to the 3' carbon atom of another nucleotide, while the hydrogen bonds stabilize DNA double helices across the helix axis but not in the direction of the axis. [19] This makes it possible to separate the strands from one another.
In IC, however, the process happens within one atom, and without a real intermediate gamma ray. Just as an atom may produce an IC electron instead of a gamma ray if energy is available from within the nucleus, so an atom may produce an Auger electron instead of an X-ray if an electron is missing from one of the low-lying electron shells. (The ...
Simple electron capture by itself results in a neutral atom, since the loss of the electron in the electron shell is balanced by a loss of positive nuclear charge. However, a positive atomic ion may result from further Auger electron emission. Electron capture is an example of weak interaction, one of the four fundamental forces.
The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.
For DNA oligonucleotides, i.e. short sequences of DNA, the thermodynamics of hybridization can be accurately described as a two-state process. In this approximation one neglects the possibility of intermediate partial binding states in the formation of a double strand state from two single stranded oligonucleotides.
This isotope has one unpaired proton and one unpaired neutron, so either the proton or the neutron can decay to the other particle, which has opposite isospin. This particular nuclide (though not all nuclides in this situation) is more likely to decay through beta plus decay (61.52(26) % [27]) than through electron capture (38.48(26) % [27]).
[4] [5] [6] One proposed mechanism of intercalation is as follows: In aqueous isotonic solution, the cationic intercalator is attracted electrostatically to the surface of the polyanionic DNA. The ligand displaces a sodium and/or magnesium cation present in the "condensation cloud" of such cations that surrounds DNA (to partially balance the ...