Ad
related to: introduction to abstract mathematics
Search results
Results from the WOW.Com Content Network
Abstraction in mathematics is the process of extracting the underlying structures, patterns or properties of a mathematical concept, removing any dependence on real world objects with which it might originally have been connected, and generalizing it so that it has wider applications or matching among other abstract descriptions of equivalent phenomena.
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are sets with specific operations acting on their elements. [1] Algebraic structures include groups , rings , fields , modules , vector spaces , lattices , and algebras over a field .
In 1941 he and Mac Lane published A Survey of Modern Algebra, the second undergraduate textbook in English on the subject (Cyrus Colton MacDuffee's An Introduction to Abstract Algebra was published in 1940). Mac Lane and Birkhoff's Algebra (1967) is a more advanced text on abstract algebra.
In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods ...
In mathematics, many types of algebraic structures are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a ...
Pure mathematics studies the properties and structure of abstract objects, [1] such as the E8 group, in group theory. This may be done without focusing on concrete applications of the concepts in the physical world. Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may ...
Let be a vector space over a field. [6] For instance, suppose is or , the standard n-dimensional space of column vectors over the real or complex numbers, respectively.In this case, the idea of representation theory is to do abstract algebra concretely by using matrices of real or complex numbers.
Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science , engineering , medicine , and the social sciences .
Ad
related to: introduction to abstract mathematics