Search results
Results from the WOW.Com Content Network
The absolute difference of two real numbers and is given by | |, the absolute value of their difference. It describes the distance on the real line between the points corresponding to x {\displaystyle x} and y {\displaystyle y} .
The difference of two squares is used to find the linear factors of the sum of two squares, using complex number coefficients. For example, the complex roots of z 2 + 4 {\displaystyle z^{2}+4} can be found using difference of two squares:
The actual difference is not usually a good way to compare the numbers, in particular because it depends on the unit of measurement. For instance, 1 m is the same as 100 cm, but the absolute difference between 2 and 1 m is 1 while the absolute difference between 200 and 100 cm is 100, giving the impression of a larger difference. [4]
Prime gap probability density for primes up to 1 million. Peaks occur at multiples of 6. [1]A prime gap is the difference between two successive prime numbers.The n-th prime gap, denoted g n or g(p n) is the difference between the (n + 1)-st and the n-th prime numbers, i.e.
Every other triangular number is a hexagonal number. Knowing the triangular numbers, one can reckon any centered polygonal number; the n th centered k-gonal number is obtained by the formula = + where T is a triangular number. The positive difference of two triangular numbers is a trapezoidal number.
Numbers p and q like this can be computed with the extended Euclidean algorithm. gcd(a, 0) = | a |, for a ≠ 0, since any number is a divisor of 0, and the greatest divisor of a is | a |. [2] [5] This is usually used as the base case in the Euclidean algorithm. If a divides the product b⋅c, and gcd(a, b) = d, then a/d divides c.
Catastrophic cancellation occurs when two numbers which are approximately equal are subtracted. While each of the numbers may independently be representable to a certain number of digits of precision, the identical leading digits of each number cancel, resulting in a difference of lower relative precision.
In statistics, Cohen's h, popularized by Jacob Cohen, is a measure of distance between two proportions or probabilities. Cohen's h has several related uses: It can be used to describe the difference between two proportions as "small", "medium", or "large". It can be used to determine if the difference between two proportions is "meaningful".