enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    The eccentricity can be defined as the ratio of the linear eccentricity to the semimajor axis a: that is, = (lacking a center, the linear eccentricity for parabolas is not defined). It is worth to note that a parabola can be treated as an ellipse or a hyperbola, but with one focal point at infinity .

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Given the above general parametrization of the hyperbola in Cartesian coordinates, the eccentricity can be found using the formula in Conic section#Eccentricity in terms of coefficients. The center ( x c , y c ) {\displaystyle (x_{c},y_{c})} of the hyperbola may be determined from the formulae

  4. Hyperbolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_trajectory

    With eccentricity just over 1 the hyperbola is a sharp "v" shape. At = the asymptotes are at right angles. With > the asymptotes are more than 120° apart, and the periapsis distance is greater than the semi major axis. As eccentricity increases further the motion approaches a straight line.

  5. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    Note that for a given amount of total mass, the specific energy and the semi-major axis are always the same, regardless of eccentricity or the ratio of the masses. Conversely, for a given total mass and semi-major axis, the total specific orbital energy is always the same. This statement will always be true under any given conditions. [citation ...

  6. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    the eccentricity can be written as a function of the coefficients of the quadratic equation. [18] If 4AC = B 2 the conic is a parabola and its eccentricity equals 1 (provided it is non-degenerate). Otherwise, assuming the equation represents either a non-degenerate hyperbola or ellipse, the eccentricity is given by

  7. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    The mean eccentricity of an object is the average eccentricity as a result of perturbations over a given time period. Neptune currently has an instant (current epoch ) eccentricity of 0.011 3 , [ 11 ] but from 1800 to 2050 has a mean eccentricity of 0.008 59 .

  8. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    It is also possible to describe all conic sections in terms of a single focus and a single directrix, which is a given line not containing the focus. A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e.

  9. Bertrand's theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_theorem

    where e (the eccentricity), and θ 0 (the phase offset) are constants of integration. This is the general formula for a conic section that has one focus at the origin; e = 0 corresponds to a circle, 0 < e < 1 corresponds to an ellipse, e = 1 corresponds to a parabola, and e > 1 corresponds to a hyperbola.